Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
FASEB J ; 38(1): e23367, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095329

RESUMO

Leishmania encode six paralogs of the cap-binding protein eIF4E and five eIF4G candidates, forming unique complexes. Two cap-binding proteins, LeishIF4E1 and LeishIF4E2, do not bind any identified LeishIF4Gs, thus their roles are intriguing. Here, we combine structural prediction, proteomic analysis, and interaction assays to shed light on LeishIF4E2 function. A nonconserved C-terminal extension was identified through structure prediction and sequence alignment. m7 GTP-binding assays involving both recombinant and transgenic LeishIF4E2 with and without the C-terminal extension revealed that this extension functions as a regulatory gate, modulating the cap-binding activity of LeishIF4E2. The interactomes of the two LeishIF4E2 versions were investigated, highlighting the role of the C-terminal extension in binding to SLBP2. SLBP2 is known to interact with a stem-loop structure in the 3' UTRs of histone mRNAs. Consistent with the predicted inhibitory effect of SLBP2 on histone expression in Xenopus laevis, a hemizygous deletion mutant of LeishIF4E2, exhibited an upregulation of several histones. We therefore propose that LeishIF4E2 is involved in histone expression, possibly through its interaction between SLBP2 and LeishIF4E2, thus affecting cell cycle progression. In addition, cell synchronization showed that LeishIF4E2 expression decreased during the S-phase, when histones are known to be synthesized. Previous studies in T. brucei also highlighted an association between TbEIF4E2 and SLBP2, and further reported on an interaction between TbIF4E2 and S-phase-abundant mRNAs. Our results show that overexpression of LeishIF4E2 correlates with upregulation of cell cycle and chromosome maintenance proteins. Along with its effect on histone expression, we propose that LeishIF4E2 is involved in cell cycle progression.


Assuntos
Leishmania , Proteínas de Ligação ao Cap de RNA/metabolismo , Histonas/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Ciclo Celular , Ligação Proteica
2.
Pharmacol Res ; 198: 107008, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995895

RESUMO

LSM1 is part of the cytoplasmic protein complex Lsm1-7-Pat1 and is likely involved in pre-mRNA degradation by aiding U4/U6 snRNP formation. More research is needed to uncover LSM1's potential in breast cancer (BRCA) clinical pathology, the tumor immune microenvironment, and precision oncology. We discovered LSM1 as a diagnostic marker for advanced BRCA with poor survival, using a multi-omics approach. We studied LSM1 expression across BRCA regions and its link to immune cells through various methods, including spatial transcriptomics and single-cell RNA-sequencing. We also examined how silencing LSM1 affects mitochondrial function and energy metabolism in the tumor environment. These findings were confirmed using 54 BRCA patient biopsies and tissue microarrays. Immunofluorescence and bioinformatics assessed LSM1's connection to clinicopathological features and prognosis. This study uncovers gene patterns linked to breast cancer, with LSM1 linked to macrophage energy processes. Silencing LSM1 in breast cancer cells disrupts mitochondria and energy metabolism. Spatial analysis aligns with previous results, showing LSM1's connection to macrophages. Biopsies confirm LSM1 elevation in advanced breast cancer with increased macrophage presence. To summarize, LSM1 changes may drive BRCA progression, making it a potential diagnostic and prognostic marker. It also influences energy metabolism and the tumor's immune environment during metastasis, showing promise for precision medicine and drug screening in BRCA.


Assuntos
Neoplasias da Mama , Proteínas de Saccharomyces cerevisiae , Humanos , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Saccharomyces cerevisiae/genética , RNA Mensageiro/metabolismo , Neoplasias da Mama/genética , Macrófagos Associados a Tumor/metabolismo , Medicina de Precisão , Microambiente Tumoral , Proteínas Proto-Oncogênicas/metabolismo
3.
Mol Brain ; 16(1): 9, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650535

RESUMO

The consolidation of learned information into long-lasting memories requires the strengthening of synaptic connections through de novo protein synthesis. Translation initiation factors play a cardinal role in gating the production of new proteins thereby regulating memory formation. Both positive and negative regulators of translation play a critical role in learning and memory consolidation. The eukaryotic initiation factor 4E (eIF4E) homologous protein (4EHP, encoded by the gene Eif4e2) is a pivotal negative regulator of translation but its role in learning and memory is unknown. To address this gap in knowledge, we generated excitatory (glutamatergic: CaMKIIα-positive) and inhibitory (GABAergic: GAD65-positive) conditional knockout mice for 4EHP, which were analyzed in various behavioral memory tasks. Knockout of 4EHP in Camk2a-expressing neurons (4EHP-cKOexc) did not impact long-term memory in either contextual fear conditioning or Morris water maze tasks. Similarly, long-term contextual fear memory was not altered in Gad2-directed 4EHP knockout mice (4EHP-cKOinh). However, when subjected to a short-term T-maze working memory task, both mouse models exhibited impaired cognition. We therefore tested the hypothesis that de novo protein synthesis plays a direct role in working memory. We discovered that phosphorylation of ribosomal protein S6, a measure of mTORC1 activity, is dramatically reduced in the CA1 hippocampus of 4EHP-cKOexc mice. Consistently, genetic reduction of mTORC1 activity in either excitatory or inhibitory neurons was sufficient to impair working memory. Taken together, these findings indicate that translational control by 4EHP and mTORC1 in both excitatory and inhibitory neurons are necessary for working memory.


Assuntos
Fator de Iniciação 4E em Eucariotos , Aprendizagem , Memória de Curto Prazo , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Proteínas de Ligação ao Cap de RNA/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo
4.
FEBS J ; 290(2): 266-285, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758096

RESUMO

The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.


Assuntos
Fator de Iniciação 4E em Eucariotos , MicroRNAs , Proteínas de Ligação ao Cap de RNA/química , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , Ligação Proteica
5.
Nat Commun ; 13(1): 1067, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217638

RESUMO

Telomerase reverse transcriptase (TERT) and the noncoding telomerase RNA (TR) subunit constitute the core of telomerase. Additional subunits are required for ribonucleoprotein complex assembly and in some cases remain stably associated with the active holoenzyme. Pof8, a member of the LARP7 protein family is such a constitutive component of telomerase in fission yeast. Using affinity purification of Pof8, we have identified two previously uncharacterized proteins that form a complex with Pof8 and participate in telomerase biogenesis. Both proteins participate in ribonucleoprotein complex assembly and are required for wildtype telomerase activity and telomere length maintenance. One factor we named Thc1 (Telomerase Holoenzyme Component 1) shares structural similarity with the nuclear cap binding complex and the poly-adenosine ribonuclease (PARN), the other is the ortholog of the methyl phosphate capping enzyme (Bin3/MePCE) in metazoans and was named Bmc1 (Bin3/MePCE 1) to reflect its evolutionary roots. Thc1 and Bmc1 function together with Pof8 in recognizing correctly folded telomerase RNA and promoting the recruitment of the Lsm2-8 complex and the catalytic subunit to assemble functional telomerase.


Assuntos
Schizosaccharomyces , Telomerase , Holoenzimas/metabolismo , Fosfatos/metabolismo , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Schizosaccharomyces/metabolismo , Telomerase/metabolismo , Telômero/metabolismo
6.
J Mol Biol ; 434(5): 167451, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026230

RESUMO

The control of RNA metabolism is an important aspect of molecular biology with wide-ranging impacts on cells. Central to processing of coding RNAs is the addition of the methyl-7 guanosine (m7G) "cap" on their 5' end. The eukaryotic translation initiation factor eIF4E directly binds the m7G cap and through this interaction plays key roles in many steps of RNA metabolism including nuclear RNA export and translation. eIF4E also stimulates capping of many transcripts through its ability to drive the production of the enzyme RNMT which methylates the G-cap to form the mature m7G cap. Here, we found that eIF4E also physically associated with RNMT in human cells. Moreover, eIF4E directly interacted with RNMT in vitro. eIF4E is only the second protein reported to directly bind the methyltransferase domain of RNMT, the first being its co-factor RAM. We combined high-resolution NMR methods with biochemical studies to define the binding interfaces for the RNMT-eIF4E complex. Further, we found that eIF4E competes for RAM binding to RNMT and conversely, RNMT competes for binding of well-established eIF4E-binding partners such as the 4E-BPs. RNMT uses novel structural means to engage eIF4E. Finally, we observed that m7G cap-eIF4E-RNMT trimeric complexes form, and thus RNMT-eIF4E complexes may be employed so that eIF4E captures newly capped RNA. In all, we show for the first time that the cap-binding protein eIF4E directly binds to the cap-maturation enzyme RNMT.


Assuntos
Fator de Iniciação 4E em Eucariotos , Capuzes de RNA , Fator de Iniciação 4E em Eucariotos/genética , Guanosina/metabolismo , Humanos , Metiltransferases/metabolismo , Ligação Proteica , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo
7.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884522

RESUMO

Leishmania parasites are digenetic protists that shuffle between sand fly vectors and mammalian hosts, transforming from flagellated extracellular promastigotes that reside within the intestinal tract of female sand flies to the obligatory intracellular and non-motile amastigotes within mammalian macrophages. Stage differentiation is regulated mainly by post-transcriptional mechanisms, including translation regulation. Leishmania parasites encode six different cap-binding proteins, LeishIF4E1-6, that show poor conservation with their counterparts from higher eukaryotes and among themselves. In view of the changing host milieu encountered throughout their life cycle, we propose that each LeishIF4E has a unique role, although these functions may be difficult to determine. Here we characterize LeishIF4E-6, a unique eIF4E ortholog that does not readily associate with m7GTP cap in either of the tested life forms of the parasite. We discuss the potential effect of substituting two essential tryptophan residues in the cap-binding pocket, expected to be involved in the cap-binding activity, as judged from structural studies in the mammalian eIF4E. LeishIF4E-6 binds to LeishIF4G-5, one of the five eIF4G candidates in Leishmania. However, despite this binding, LeishIF4E-6 does not appear to function as a translation factor. Its episomal overexpression causes a general reduction in the global activity of protein synthesis, which was not observed in the hemizygous deletion mutant generated by CRISPR-Cas9. This genetic profile suggests that LeishIF4E-6 has a repressive role. The interactome of LeishIF4E-6 highlights proteins involved in RNA metabolism such as the P-body marker DHH1, PUF1 and an mRNA-decapping enzyme that is homologous to the TbALPH1.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Leishmania/metabolismo , Proteínas de Protozoários/metabolismo , Análogos de Capuz de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Sequência de Aminoácidos , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/genética , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Biossíntese de Proteínas , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Análogos de Capuz de RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Homologia de Sequência
8.
PLoS One ; 16(11): e0258903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807934

RESUMO

Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3'-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo , RNA Nucleotidiltransferases/metabolismo , Trypanosoma brucei brucei/metabolismo , Diferenciação Celular , Genes Reporter , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento
9.
Annu Rev Biochem ; 90: 321-348, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33770447

RESUMO

Influenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Orthomyxoviridae/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Humanos , Orthomyxoviridae/patogenicidade , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
10.
Neurobiol Aging ; 98: 173-184, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33302179

RESUMO

Translation regulation in the context of aged-associated inflammation and behavioral impairments is not well characterized. Aged individuals experience lower life quality due to behavioral impairments. In this study, we used young and aged transgenic mice that are unable to activate the cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E) to examine the role of protein translation control in aging, memory, depression, and anxiety. To determine how products of cap-dependent translation play a permissive role in aged-associated inflammation, we assessed levels of pro-inflammatory cytokines in various brain regions involved in the above-mentioned behaviors. We found that functional eIF4E is not necessary for age-related deficits in spatial and short-term memory but is important for depressive and anxiety-like behavior and this is correlated with pro-inflammatory cytokines in discrete brain regions. Thus, we have begun to elucidate a role for eIF4E phosphorylation in the context of aged-related behavioral impairments and chronic low-grade inflammation that may help identify novel immune modulators for therapeutic targets and decrease the burden of self-care among the geriatric population.


Assuntos
Afeto , Envelhecimento/imunologia , Envelhecimento/psicologia , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação ao Cap de RNA/metabolismo , Envelhecimento/metabolismo , Animais , Ansiedade/genética , Encéfalo/metabolismo , Citocinas/metabolismo , Depressão/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Inflamação/genética , Mediadores da Inflamação/metabolismo , Camundongos Transgênicos , Fosforilação
11.
Plant Sci ; 300: 110593, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33180718

RESUMO

CBP20 (Cap-Binding Protein 20) encodes a small subunit of nuclear Cap-Binding Complex (nCBC) that together with CBP80 binds mRNA cap. We previously described barley hvcbp20.ab mutant that demonstrated higher leaf water content and faster stomatal closure than the WT after drought stress. Hence, we presumed that the better water-saving mechanism in hvcbp20.ab may result from the lower permeability of epidermis that together with stomata action limit the water evaporation under drought stress. We asked whether hvcbp20.ab exhibited any differences in wax load on the leaf surface when subjected to drought in comparison to WT cv. 'Sebastian'. To address this question, we investigated epicuticular wax structure and chemical composition under drought stress in hvcbp20.ab mutant and its WT. We showed that hvcbp20.ab mutant exhibited the increased deposition of cuticular wax. Moreover, our gene expression results suggested a role of HvCBP20 as a negative regulator of both, the biosynthesis of waxes at the level of alkane-forming, and waxes transportation. Interestingly, we also observed increased wax deposition in Arabidopsis cbp20 mutant exposed to drought, which allowed us to describe the CBP20-regulated epicuticular wax accumulation under drought stress in a wider evolutionarily context.


Assuntos
Desidratação/fisiopatologia , Hordeum/genética , Hordeum/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Água/metabolismo , Desidratação/genética , Regulação da Expressão Gênica de Plantas , Mutação , Epiderme Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
12.
Biochem Biophys Res Commun ; 533(3): 391-396, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32962861

RESUMO

The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding proteins that are very highly expressed during antiviral response of immune system. IFIT proteins recognize and tightly bind foreign RNA particles. These are primarily viral RNAs ended with triphosphate at the 5' or lacking methylation of the first cap-proximal nucleotide but also in vitro transcribed RNA synthesized in the laboratory. Recognition of RNA by IFIT proteins leads to the formation of stable RNA/IFIT complexes and translational shut off of non-self transcripts. Here, we present a fluorescent-based assay to study the interaction between RNA molecules and IFIT family proteins. We have particularly focused on two representatives of this family: IFIT1 and IFIT5. We found a probe that competitively with RNA binds the positively charged tunnel in these IFIT proteins. The use of this probe for IFIT titration allowed us to evaluate the differences in binding affinities of mRNAs with different variants of 5' ends.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Naftalenossulfonato de Anilina/química , Bioensaio , Corantes Fluorescentes/química , Proteínas de Neoplasias/química , Proteínas de Ligação ao Cap de RNA/química , Capuzes de RNA/química , Proteínas de Ligação a RNA/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Ligação Competitiva , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Conformação Proteica , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espectrometria de Fluorescência , Eletricidade Estática , Termodinâmica
13.
Genes Dev ; 34(17-18): 1113-1127, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873578

RESUMO

The largely nuclear cap-binding complex (CBC) binds to the 5' caps of RNA polymerase II (RNAPII)-synthesized transcripts and serves as a dynamic interaction platform for a myriad of RNA processing factors that regulate gene expression. While influence of the CBC can extend into the cytoplasm, here we review the roles of the CBC in the nucleus, with a focus on protein-coding genes. We discuss differences between CBC function in yeast and mammals, covering the steps of transcription initiation, release of RNAPII from pausing, transcription elongation, cotranscriptional pre-mRNA splicing, transcription termination, and consequences of spurious transcription. We describe parameters known to control the binding of generic or gene-specific cofactors that regulate CBC activities depending on the process(es) targeted, illustrating how the CBC is an ever-changing choreographer of gene expression.


Assuntos
Regulação da Expressão Gênica , Proteínas de Ligação ao Cap de RNA/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Animais , Núcleo Celular/metabolismo , Humanos , Fases de Leitura Aberta/genética , Saccharomyces cerevisiae
14.
Biochem Biophys Res Commun ; 526(4): 1143-1149, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32327257

RESUMO

In this study, we examined the impact of roscovitine, a cyclin-dependent kinase inhibitor (CDKI) that has entered phase I and II clinical trials, on influenza A viruses (IAVs) and its antiviral mechanism. The results illustrated that roscovitine inhibited multiple subtypes of influenza strains dose-dependently, including A/WSN/1933(H1N1), A/Aichi/2/68 (H3N2) and A/FM1/47 (H1N1) with IC50 value of 3.35 ± 0.39, 7.01 ± 1.84 and 5.99 ± 1.89 µM, respectively. Moreover, roscovitine suppressed the gene transcription and genome replication steps in the viral life cycle. Further mechanistic studies indicated that roscovitine reduced viral polymerase activity and bound specifically to the viral PB2cap protein by fluorescence polarization assay (FP) and surface plasmon resonance (SPR). Therefore, we believed roscovitine, as a PB2cap inhibitor, was a prospective antiviral agent to be developed as therapeutic treatment against influenza A virus infection.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Roscovitina/farmacologia , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Cães , Genoma Viral , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Inibidores de Proteínas Quinases/química , Roscovitina/química , Transcrição Gênica/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/genética
15.
Nat Commun ; 11(1): 1063, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102997

RESUMO

Mediator is a coregulatory complex that regulates transcription of Pol II-dependent genes. Previously, we showed that human Mediator subunit MED26 plays a role in the recruitment of Super Elongation Complex (SEC) or Little Elongation Complex (LEC) to regulate the expression of certain genes. MED26 plays a role in recruiting SEC to protein-coding genes including c-myc and LEC to small nuclear RNA (snRNA) genes. However, how MED26 engages SEC or LEC to regulate distinct genes is unclear. Here, we provide evidence that MED26 recruits LEC to modulate transcription termination of non-polyadenylated transcripts including snRNAs and mRNAs encoding replication-dependent histone (RDH) at Cajal bodies. Our findings indicate that LEC recruited by MED26 promotes efficient transcription termination by Pol II through interaction with CBC-ARS2 and NELF/DSIF, and promotes 3' end processing by enhancing recruitment of Integrator or Heat Labile Factor to snRNA or RDH genes, respectively.


Assuntos
Regulação da Expressão Gênica/genética , Complexo Mediador/genética , RNA Nuclear Pequeno/genética , Terminação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
16.
J Biol Chem ; 295(51): 17781-17801, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454014

RESUMO

Knockout mouse models have been extensively used to study the antiviral activity of IFIT (interferon-induced protein with tetratricopeptide repeats). Human IFIT1 binds to cap0 (m7GpppN) RNA, which lacks methylation on the first and second cap-proximal nucleotides (cap1, m7GpppNm, and cap2, m7GpppNmNm, respectively). These modifications are signatures of "self" in higher eukaryotes, whereas unmodified cap0-RNA is recognized as foreign and, therefore, potentially harmful to the host cell. IFIT1 inhibits translation at the initiation stage by competing with the cap-binding initiation factor complex, eIF4F, restricting infection by certain viruses that possess "nonself" cap0-mRNAs. However, in mice and other rodents, the IFIT1 orthologue has been lost, and the closely related Ifit1b has been duplicated twice, yielding three paralogues: Ifit1, Ifit1b, and Ifit1c. Although murine Ifit1 is similar to human IFIT1 in its cap0-RNA-binding selectivity, the roles of Ifit1b and Ifit1c are unknown. Here, we found that Ifit1b preferentially binds to cap1-RNA, whereas binding is much weaker to cap0- and cap2-RNA. In murine cells, we show that Ifit1b can modulate host translation and restrict WT mouse coronavirus infection. We found that Ifit1c acts as a stimulatory cofactor for both Ifit1 and Ifit1b, promoting their translation inhibition. In this way, Ifit1c acts in an analogous fashion to human IFIT3, which is a cofactor to human IFIT1. This work clarifies similarities and differences between the human and murine IFIT families to facilitate better design and interpretation of mouse models of human infection and sheds light on the evolutionary plasticity of the IFIT family.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coronavirus/crescimento & desenvolvimento , Coronavirus/genética , Biossíntese de Proteínas , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Coronavirus/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Ligação Proteica , Células RAW 264.7 , Proteínas de Ligação a RNA/genética
17.
PLoS Pathog ; 15(12): e1008155, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31856218

RESUMO

Cellular response to environmental challenges requires immediate and precise regulation of transcriptional programs. During viral infections, this includes the expression of antiviral genes that are essential to combat the pathogen. Transcribed mRNAs are bound and escorted to the cytoplasm by the cap-binding complex (CBC). We recently identified a protein complex consisting of NCBP1 and NCBP3 that, under physiological conditions, has redundant function to the canonical CBC, consisting of NCBP1 and NCBP2. Here, we provide evidence that NCBP3 is essential to mount a precise and appropriate antiviral response. Ncbp3-deficient cells allow higher virus growth and elicit a reduced antiviral response, a defect happening on post-transcriptional level. Ncbp3-deficient mice suffered from severe lung pathology and increased morbidity after influenza A virus challenge. While NCBP3 appeared to be particularly important during viral infections, it may be more broadly involved to ensure proper protein expression.


Assuntos
Infecções por Orthomyxoviridae/imunologia , Proteínas de Ligação ao Cap de RNA/imunologia , Proteínas de Ligação ao Cap de RNA/metabolismo , Animais , Vírus da Influenza A/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/metabolismo , Biossíntese de Proteínas/fisiologia
18.
Molecules ; 24(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108861

RESUMO

The mRNA 5' cap consists of N7-methylguanosine bound by a 5',5'-triphosphate bridge to the first nucleotide of the transcript. The cap interacts with various specific proteins and participates in all key mRNA-related processes, which may be of therapeutic relevance. There is a growing demand for new biophysical and biochemical methods to study cap-protein interactions and identify the factors which inhibit them. The development of such methods can be aided by the use of properly designed fluorescent molecular probes. Herein, we synthesized a new class of m7Gp3G cap derivatives modified with an alkyne handle at the N1-position of guanosine and, using alkyne-azide cycloaddition, we functionalized them with fluorescent tags to obtain potential probes. The cap derivatives and probes were evaluated in the context of two cap-binding proteins, eukaryotic translation initiation factor (eIF4E) and decapping scavenger (DcpS). Biochemical and biophysical studies revealed that N1-propargyl moiety did not significantly disturb cap-protein interaction. The fluorescent properties of the probes turned out to be in line with microscale thermophoresis (MST)-based binding assays.


Assuntos
Análogos de Capuz de RNA/síntese química , Proteínas de Ligação ao Cap de RNA/metabolismo , Química Click , Reação de Cicloadição , Guanosina/química , Humanos , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/química
19.
J Cell Biochem ; 120(9): 14201-14212, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31074051

RESUMO

Eukaryotic initiation factor 4E (eIF4E), a fundamental effector and rate limiting element of protein synthesis, binds the 7-methylguanosine cap at the 5' end of eukaryotic messenger RNA (mRNA) specifically as a constituent of eIF4F translation initiation complex thus facilitating the recruitment of mRNA to the ribosomes. This review focusses on the engagement of signals contributing to growth factor originated maxim and their role in the activation of eIF4E to achieve a collective influence on cellular growth, with a key focus on conjuring vital processes like protein synthesis. The review invites considerable interest in elevating the appeal of eIF4E beyond its role in regulating translation viz a viz cancer genesis, attributed to its phosphorylation state that improves the prospect for the growth of the cancerous cell. This review highlights the latest studies that have envisioned to target these pathways and ultimately the translational machinery for therapeutic intervention. The review also brings forward the prospect of eIF4E to act as a converging juncture for signaling pathways like mTOR/PI3K and Mnk/MAPK to promote tumorigenesis.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/análogos & derivados , Biossíntese de Proteínas , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Guanosina/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , RNA Mensageiro/genética , Ribossomos/genética , Transdução de Sinais
20.
EBioMedicine ; 41: 299-309, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30852162

RESUMO

BACKGROUND: Hypoxia suppresses global protein production, yet certain essential proteins are translated through alternative pathways to survive under hypoxic stress. Translation via the internal ribosome entry site (IRES) is a means to produce proteins under stress conditions such as hypoxia; however, the underlying mechanism remains largely uncharacterized. METHODS: Proteomic and bioinformatic analyses were employed to identify hnRNPM as an IRES interacting factor. Clinical specimens and mouse model of tumorigenesis were used for determining the expression and correlation of hnRNPM and its target gene. Transcriptomic and translatomic analyses were performed to profile target genes regulated by hnRNPM. FINDINGS: Hypoxia increases cytosolic hnRNPM binding onto its target mRNAs and promotes translation initiation. Clinical colon cancer specimens and mouse carcinogenesis model showed that hnRNPM is elevated during the development of colorectal cancer, and is associated with poor prognosis. Genome-wide transcriptomics and translatomics analyses revealed a unique set of hnRNPM-targeted genes involved in metabolic processes and cancer neoplasia are selectively translated under hypoxia. INTERPRETATION: These data highlight the critical role of hnRNPM-IRES-mediated translation in transforming hypoxia-induced proteome toward malignancy. FUND: This work was supported by the Ministry of Science and Technology, Taiwan (MOST 104-2320-B-006-042 to HSS and MOST 105-2628-B-001-MY3 to TMC).


Assuntos
Hipóxia Celular , Neoplasias do Colo/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/mortalidade , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Humanos , Estimativa de Kaplan-Meier , Camundongos , Biossíntese de Proteínas , Proteínas de Ligação ao Cap de RNA/antagonistas & inibidores , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...